
Preface

In the phrase mathematical logic, the word “mathematical” is ambiguous. It can be taken to
specify the methods used, so that the phrase refers to the mathematical study of the principles
of reasoning. It can be taken to demarcate the type of reasoning considered, so that the phrase
refers to the study of specifically mathematical reasoning. Or it can be taken to indicate the
purpose, so that the phrase refers to the study of logic with an eye toward mathematical
applications.

In the title of this book, the word “mathematical” is intended in the first two senses but
not in the third. In other words, mathematical logic is viewed here as a mathematical study
of the methods of mathematical reasoning. The subject is interesting in its own right, and it
has mathematical applications. But it also has applications in computer science, for example,
to the verification of hardware and software and to the mechanization of mathematical rea-
soning. It can inform the philosophy of mathematics as well, by providing idealized models
of what it means to do mathematics.

One thing that distinguishes logic as a discipline is its focus on language. The subject
starts with formal expressions that are supposed to model the informal language we use to
define objects, state claims, and prove them. At that point, two distinct perspectives emerge.
From a semantic perspective, the formal expressions are used to say things about abstract
mathematical objects and structures. They can be used to characterize classes of structures
like groups, rings, and fields; to characterize particular structures, like the Euclidean plane or
the real numbers; or to describe relationships within a particular structure. From that point
of view, mathematical logic is the science of reference, definability, and truth, clarifying
the semantic notions that determine the relationship between mathematical language and the
mathematical structures it describes.

This book adopts a more syntactic perspective, in which the primary objects of interest are
the expressions themselves. From that point of view, formal languages are used to reason
and calculate, and what we care about are the rules that govern their proper use. We will
use formal systems to understand patterns of mathematical inference and the structure of
mathematical definitions and proofs, and we will be interested in the things that we can do
with these syntactic representations. We won’t shy away from the use of semantic methods,
but our goal is to use semantics to illuminate syntax rather than the other way around.

There are a number of reasons why a syntactic approach is valuable. The mathematical
theory of syntax is independently interesting and informative. A focus on syntactic objects
is also more closely aligned with computer science, since these objects can be represented as
data and acted on by algorithms. Finally, there are philosophical benefits. Because a general
theory of finite strings of symbols is all that is needed to work with expressions, a syntactic
perspective provides a means of studying mathematical reasoning – including the use of
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infinitary objects and methods – without importing strong mathematical presuppositions at
the outset.

Another notable feature of this book is its focus on computation. On the one hand, we
expect mathematics to give us a broad conceptual understanding. At the empirical borders
of the subject, this serves to organize and explain our scientific observations, but our desire
for understanding is not limited to empirical phenomena. On the other hand, we also expect
mathematics to tell us how to calculate trajectories and probabilities so that we can make bet-
ter predictions and decisions, and act rationally toward securing our pragmatic goals. There
is a tension between conceptual understanding and calculation: computation is important,
but we often see further, and reason more efficiently, by suppressing computational detail.

The tension is partially captured by the logician’s distinction between classical logic, on
the one hand, and intuitionistic or constructive logic, on the other. Classical logic is meant to
support a style of reasoning that supports abstraction and idealization, whereas intuitionistic
logic is more directly suited to computational interpretation. Mathematics today is resolutely
classical, but mathematics without calculation is almost a contradiction in terms. And while
the end goal of computer science is practical computation, abstraction is essential to de-
signing and reasoning about computational systems. Here we will study both classical and
constructive logic, with an eye toward understanding the relationships between the two.

The connections between logic and computation run deep: we can compute with formal
expressions, we can reason formally about computation, and we can extract computational
content from formal derivations. The style of presentation I have adopted here runs the risk
of being judged too mathematical by computer scientists and too computationally minded
for pure mathematicians, but I have aimed to strike a balance and, hopefully, bring the two
communities closer together.

Audience The material here should be accessible at an advanced undergraduate or introduc-
tory graduate level. I have tried to keep the presentation self-contained, but the emphasis
is on proving things about logical systems rather than illustrating and motivating their use.
Readers who have had a prior introduction to logic will be able to navigate the material here
more quickly and comfortably.

Notation Most of the notation in this book is conventional, but challenges inevitably arise
when juxtaposing material from fields where conventions differ. The most striking instance
of such a challenge is the use of binders like quantifiers and lambda abstraction: mathe-
matical logicians generally take such operations to bind tightly, while computer scientists
typically give them the widest scope possible. Another mismatch arises with respect to func-
tion application, since theoretical computer scientists often write f x instead of f (x). So,
where a mathematical logician would write

∃x A(x)→∃x (A(x)∧ ∀y (R(y, x)→¬A(y))),

a computer scientist might write

(∃x. A x)→∃x. A x∧ ∀y. R y x→¬A y.

As a compromise, this book uses the mathematician’s notation for symbolic logic but adopts
the computer scientist’s conventions for computational systems like the simply typed lambda
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calculus. The differences are most pronounced in Chapters 14 and 17, where logic and type
theory come together.

Teaching The material in this book can be used to teach a number of different courses, and
the dependencies between topics are mild. Chapters 1–7 provide a thorough introduction to
the syntax and semantics of first-order logic. Classically minded mathematicians can easily
tune out anything to do with intuitionistic logic, while computer scientists and other inter-
ested parties can spend more time with it. Ignoring intuitionistic logic might leave time for
the cut elimination theorem and its applications, while skipping cut elimination might leave
time to dabble in algebraic semantics.

For students already familiar with propositional and first-order logic, Chapters 8–14 pro-
vide a fairly self-contained presentation of formal arithmetic, computability, and the incom-
pleteness theorems. A course on computability and incompleteness can start with Chapter 8,
skip Section 8.5, continue to Chapter 11, refer back to Sections 10.2 and 10.5 for background
on arithmetic definability, skip Sections 11.8 and 11.9, and then move on to Chapter 12.

A course on proof theory can focus on the cut elimination theorem and its applications
(Chapters 6 and 7) and the simply typed lambda calculus (Chapter 13). Chapter 14 can
serve as the focus of a course on computational interpretations of arithmetic, building on
material in Chapters 8–11 and 13; for that purpose, Sections 8.5, 9.5, 10.6–10.7, and 11.6–
11.9 can be omitted. Similarly, Chapter 16 can serve as the focus for an introduction to
subsystems of second-order arithmetic and reverse mathematics, supported by a quick tour
of Chapters 8–11 and Sections 15.4 and 15.5. Sections 11.8 and 11.9, in particular, were
written with Chapter 16 in mind.

Most of the material after Chapter 7 is not strongly tied to any particular deductive sys-
tem. Natural deduction is sometimes used by default, but that choice is not essential to the
exposition.
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